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Abstract

Brains are characterized by every property that
engineers and computer scientists detest and
avoid.  They are chaotic, unstable, nonlinear,
nonstationary, non-Gaussian, asynchronous,
noisy, and unpredictable in fine grain, yet
undeniably they are among the most successful
devices that a billion years of evolution has
produced.  No one can justifiably claim that he
or she has modeled brains, but they are a flowing
spring of new concepts, and they provide a gold
standard of what we can aspire to accomplish in
developing more intelligent machines.  The most
fertile source of ideas with which to challenge
and break the restrictions that characterize
modern engineering practice i s  the
electroencephalogram (EEG).  It was the action
potential of single neurons that provided the
foundation of neurobiology for the 20th century,
and in its time it supported the development of
digital computers, neural networks, and
computational neuroscience.  Now in the 21st
century, the EEG will lead us in a remarkably
different direction of growth for the computing
industry, which will be dominated by highly
parallel, hierarchically organized, distributed
analog machines.  These devices now exist in
prototype form.  They feed on noise in support
of chaotic attractor landscapes, which are shaped
by reinforcement learning through self-governed
experience, not training by 'teachers', and they
may solve many of the problems of interfacing
between finite state automata and the infinite
complexity of the real world.  

1. Introduction.

Electroencephalographic (EEG) potentials are
recorded from the scalp as aperiodic fluctuations
in the microvolt range in humans and animals.
They are also found within brains where they are
often referred to as 'local field potentials', but
they are manifestations of the same dynamics of
populations of neurons.  This report summarizes
how they arise, why they oscillate, and what they

can tell us about brain function that will be
useful for engineers to construct devices that can
perform some of the functions that brains do
very well, such as pattern recognition and
classification, in contrast to existing machines.  

Neurons have two kinds of filaments by which
they interconnect and interact.  The transmitting
filament, the axon, generates propagating pulses
called action potentials or 'units', which serve to
communicate information over short and long
distances without attenuation.  The receiving
filament, the dendrite, converts pulses to graded
waves of current that can be summed linearly
both in time and space.  The resultant sum is re-
converted to pulses at rates proportional to
dendritic current density in a biological form of
pulse frequency modulation.  Dendrites
consume 95% of the energy that brains use for
information processing, axons only 5%, so they
are the principal determinants of the patterns that
are observed in brain imaging with fMRI, PET
and SPECT.  They are also the principal source
of electric currents passing across the
extraneuronal resistance of brain tissue (~300
ohm.cm/cm2), creating the EEG.  Most of what
we know about sensory and motor information
processing has come from studies of action
potentials.  The bridge that we need to
understand the relations between 'unit activity'
and brain images is provided by the EEG.  

2. Relations between EEG and 'units'

Most EEG waves are generated by the cerebral
cortex of the forebrain, for two reasons.  First,
the neurons are exceedingly numerous, and they
are organized in layers with their dendrites in the
main oriented parallel to each other (Figure 1),
so their currents are also aligned in summation.
Second, they interact synaptically in sparse but
high density feedback.  The reciprocal synaptic
connections are by both positive feedback
(mutually excitatory) leading to large areas of
spatially coherent activity, and negative feedback
(between excitatory and inhibitory populations)
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leading to oscillations in the gamma range (20-
80 Hz) that carry information content in wave
packets [12]  Multiple types of feedback
(including positive inhibitory feedback leading to
spatial contrast enhancement) support lower
frequency oscillations in alpha and theta ranges
(3-12 Hz) at which wave packets are gated.  

To understand how the information that is
received at the dendrites is converged to the axon
we need to understand the way the dendrites
operate.  The dendrites typically generate electric
currents which are initiated at synapses packed
over the entire tree (Figure 2).  

Figure 1. The filamentous structure of cortical
neurons and their palisades in layers is shown by
silver impregnation (the Golgi technique),
selecting only 1% of the neurons in the field

Each synapse acts like a small battery with a
high internal impedance, so that its current
strength does not vary with external load.  By
Kirchoff's law, current always flows in a closed
loop, so that current must flow in one direction
across the membrane at the synapse and in the
opposite direction across the membrane at other
sites with impedance match to the crossing.  The
preferred current path is along the dendritic shaft
toward the cell body.  The loop currents from all
synapses superimpose and are converge to the
origin of all the branches at the cell body and
pass across the membrane of the initial segment

of the axon where it originates from the cell
body.  Functionally, the initial segment of the
axon is also known as the trigger zone.

Among the three kinds of chemical synapse, an
excitatory synapse causes current to flow
inwardly at the synapse, along the dendritic cable
away from the synapse, outwardly across the
membrane, and back to the synapse in the space
outside the membrane (Figure 2).  An inhibitory
synapse causes a current loop with flow
outwardly at the synapse and inwardly
everywhere else.  Each current causes a voltage
drop across a high resistance in the trigger zone
membrane. The inhibitory sum is subtracted
from the excitatory sum of voltage differences.  

Figure 2. Dendrites receive action potentials at
synapses and convert the impulses to loop
currents.  The sum of current determines the rate
of unit firing.  The same current contributes to
the EEG recorded with transcortical electrodes,
but it sums with the current from all neurons in
the neighborhood, manifesting a local mean field.  

The inflow of current at one end of the neuron
and the outflow at the other end create a source-
sink pair, which gives a dipole field of potential.
The amplitude falls roughly with the square of
distance from the center, which explains how the
EEG can be observed at the surface of the cortex
and scalp, though at one thousandth the
amplitude of transmembrane potentials, owing to
the low specific resistance of extraneuronal fluid
compared to that of the neural membrane.

More generally, because the spread and
summation of dendritic current conform to the
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principle of superposition, they are described by
a 2nd order linear ordinary differential equation,
which is evaluated by fitting the sum of two
exponentials to the impulse response.

d2v/dt2 + (a+b)dv/dt + ab v = kijG(p)         (1)

The minimal input to an excitatory synapse is an
action potential, which is an impulse lasting
about one millisecond.  With a single impulse at
the synapse the dendritic current rises at a rate of
1/b = 1 to 3 milliseconds and decays at a rate of
1/a = 5 to 10 milliseconds.  At the cell body and
trigger zone this brief electrical event is observed
as an excitatory postsynaptic potential (EPSP).
The impulse response of an inhibitory synapse
has the similar form and decay time but opposite
polarity and is called an inhibitory postsynaptic
potential (IPSP).  These two types of linear
response are modeled in hardware with
operational amplifiers and (for inhibitory
synapses) inverters, and the combinations of
multiple synapses are modeled with summing
junctions.  Summing at trigger zones takes place
after synaptic amplification and sign reversal.  

The third type of synapse, which is called
modulatory, does not induce a loop current.
Instead, it changes the strength of action of
adjacent excitatory and inhibitory synapses.
Neuromodulators are also released to diffuse
through populations and enable alterations of
their chemical states.  Such multiplicative actions
are modeled with variable resistors or a variable
gain amplifier in circuits using time multiplexing
to solve the connectivity problem (Figure 3).  

Figure 3.  Time multiplexing is feasible because
the bandwidth of EEG is much lower than that of
'units'.  This reduces connectivity to 2N instead of
N**2 for N nodes. Gain values are indexed to

connection pairs under digital control.  Analog
amplitudes simulate pulse  density coding.
Neuromodulation is used to normalize neural
activity levels across distributed input, to perform
logarithmic conversion and range compression
on input, to change overall neuronal gain in
respect to behavioral awakening and arousal, and
to enable selective changes in synaptic strength
during learning, either an increase in sensitivity
during association or a decrease during
habituation.  

 The  architecture of  dendrites reflects a key role
that the dendrites perform, which is to convert
incoming pulses to currents and sum them at the
initial segment.  Spatial integration at the cell
body is important, simply because that is where
all the axonal and dendritic branches originate.
The integration of the dendritic currents is done
there also across time.  When stimuli are
frequent enough, new current superimposes on
old fading current to give temporal summation at
the initial segment.  The dendritic branches are
poor electrical conductors with high internal
resistance and high leakage across their surfaces.
Effective dendritic currents can seldom be
transmitted passively over distances longer than
a few hundred microns because of the
attenuation with distance.  The critical function
of the axon is to transmit the time-varying
amplitude of current summed by the dendrites to
distant targets without attenuation.  

The neuronal stratagem is to convert the sum of
currents into a pulse train, in which pulse
frequency is proportional to wave amplitude.
The pulse train is converted back to a wave
function that is smoothed by the target dendrites.
This is why the axonal "signal" is "analog" and
not "digital".  The energy for transmission along
the axon is provided locally by the axon
membrane as the pulse propagates, but the
release of the energy takes time  It is not done
with the speed of an electronic conductor.  The
price for axonal output that is free of attenuation
and can be carried over large distances is
threefold: nonlinearity; a delay in pulse
transmission; and discretization in time.  Thus
dendrites which are short do not use pulses, and
axons which are long do.  Dendrites generate
graded currents that are superimposable and
distributed in time and space, whereas the pulses
of axons are not superimposable.  They are point
processes in time and space.
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In a neural population, activity densities are
defined over spatial distributions of neurons in
the two surface dimensions of the cortex
orthogonal to the orientation of the dendrites.
The transformation at trigger zones of dendritic
wave density to axonal pulse density (Figure 4)
has bilateral saturation. The function for single
neurons is linear and time-varying; for
populations it is nonlinear and static. Only
populations of neurons have the smooth static
"sigmoid" relationship between the two state
variables.  The reason that the curve is static
stems from the fact that individual neurons in the
population fire unpredictably, as shown by their
Poisson interval distributions.  They also fire in
an uncorrelated manner with respect to each
other.  Hence the refractory period and
adaptation of the single neuron do not appear
directly as time variance in the ensemble average
of activity of populations but set the upper limit
on normalized pulse density, Qm = (P - Po)/Po'  

Figure 4. The asymmetric sigmoid curve is
shown for two values of the asymptotic
maximum, Qm, the lower at 1.8 for rest, the upper
at 5.0 for motivation and arousal as shown by the
bursts in Figure 3.  The equations are:

p = po (1+{1 - exp[ - (ev - 1)/Qm]}),v > -uo  (2)

dp/dv = uo exp [v - (ev - 1)/Qm]                     (3)

Experimental demonstration of the sigmoid
curve (Freeman 2000) is by calculating the pulse
probability conditional on EEG amplitude in the
same population.  Cortical populations display
activity when without stimulation that is seen as
"spontaneous" or "background" activity at rest.
The pulse activity of any one neuron averaged
over a long time period is assumed by the

ergodic hypothesis to conform to the activity of
its population over a brief time period.  Its mean
rate serves to represent the mean pulse density,
Po (Figure 4). In an excited population the pulse
density increases up to a limit Pm, which is
determined largely by potassium conductance,
GK, at trigger zones. In an inhibited population
(hyperpolarization) the pulse density is bounded
at zero.  In awake subjects the ratio Qm = Pm/Po
ranges from 5:1 to 12:1.  In resting and sleeping
states the ratio drops to 2:1, and under deep
anesthesia it goes to zero, giving the open loop
state for the impulse response.  

Another characteristic of the trigger zones is that
Po, Qm and the slope dp/dv of the sigmoid curve
(Figure 4) increase with behavioral arousal of a
subject.  This state dependence is expressed by a
single variable Qm in normalized coordinates,
which probably reflects the operation on the
cortex of a single neuromodulator chemical that
is responsible for regulating cortical excitability
during arousal in various behavioral states.  This
property is part of a more general pattern, in
which each area of cortex receives modulatory
input from several other parts of the brain.  The
modulation does not provide information-
specific input, but it changes and adjusts the
cortical state in such ways as "turn on", "turn
off", "attend", "learn", "habituate", and so on by
simultaneously operating on populations of
cortical neurons.  Neuromodulators may best be
simulated in VLSI embodiments by sending
control signals through the power lines of diodes
and amplifiers.  

The most important dynamic aspect of the
biological sigmoid curve is the fact that it is
asymmetric.  Its maximal slope dp/dv is
displaced to the excitatory side.  This property
reflects the fact that in a population most of the
neurons most of the time operate near
equilibrium and just below their thresholds for
firing, where voltage-dependent GNa increases
exponentially with depolarization.  As a result of
this regenerative feedback the firing probability
increases exponentially with depolarization, and
this is reflected in the exponential increase of the
concave-upward part of the sigmoid curve.  The
slope dp/dv is a main determinant of the forward
gain of a population  Therefore, the gain is both
state-dependent (on the degree of arousal) and
input-dependent, giving a strong increase in gain
on sensory excitation of the population.  These
gain dependencies are crucial for state transitions



Making Sense of EEG 5 Walter J Freeman

of cortex during behavioral information
processing.  In particular, the nonlinear gain
renders local areas of cortex unstable in respect
to input, and the instability is enhanced with
increasing arousal as in fear and anger.  

3. Three levels of hierarchical coding

There are three main levels of neural function in
the pattern recognition performed by sensory
systems, which are to be modeled with
appropriately tailored state variables and
operations.  Microscopic activity is seen in the
fraction of the variance of single neuron pulse
trains (>99.9%) that can be correlated with
sensory input in the form of feature detector
neurons and motor output in the form of
command neurons.  Mesoscopic activity [20] is
carried in the <0.1% of the total variance of each
neuron that is covariant with other neurons in
neuropil that comprise local neighborhoods.
Collectively it is observed in dendritic potentials
(EEGs).  The interaction of multiple sensory
cortices in different modalities together with
association areas constitutes a macroscopic
system [19].  That is the hierarchical level of
organization of brain function that is revealed by
present-day devices for brain imaging that rely
on metabolic activity and blood flow.  

The interactions by local negative feedback
between excitatory and inhibitory neurons at the
mesoscopic level support periodic oscillations
manifesting limit cycle attractors.  Multiple areas
of neuropil comprising a sensory system interact
by long feedback paths.  Due to the facts that
locally they have incommensurate characteristic
frequencies, and that multiple local areas interact
by axonal transmission imposing relatively long
delays, together they maintain global chaotic
states that are observed in aperiodic oscillations.
The basal state without stimulus input is
characterized by Gaussian distributions of EEG
amplitude and by power spectral densities that
conform to 1/f2 linear decrease in log power with
log frequency (brown noise).  

On destabilization by sensory input the multipart
system undergoes a state transition to a more
narrowly constrained spectral distribution in the
gamma range, which results from substantial
increase in interactions of cortical neurons with
each other, so that they no longer accept internal
input.  The neurons create a new pattern of
activity following each sensory barrage (Figure
5).  The contents of neural activity in brains are

deduced from correlations of the amplitudes and
frequencies of the observed activity with the on-
going behavior of animals.  These correlations
reveal a profound difference between the
dynamics of sensation and  that  ofperception.  

Figure 5. An example from the olfactory bulb
shows the EEG manifesting the short bursts of
activity (top trace) constituting wave packets, the
formation of which is by destabilization of the
bulb by input, owing to the asymmetric nonlinear
gain shown in Figure 4.  The middle trace shows
the pattern of driving by respiration that is under
control by the limbic system.  The bottom EEG is
from the target of bulbar transmission.  

Mesoscopic activity in sensory cortices is
perceptual, not sensory.  EEGs of nonlinear
brain dynamics manifest internal self-organizing
dynamics of newly created patterns emerging
from cortical background noise destabilized
under perturbation by sensory stimuli.  Sensory
and perceptual contents coexist in cortices.  The
former are extracted by time ensemble averaging
over trials, the latter by spatial ensemble
averaging of multichannel simultaneous
recordings on single trials [3, 12, 15, 20].  

The contents of brain activity patterns are
conveyed by wave packets of oscillatory activity
recurring at rates in the theta range having the
same aperiodic wave form observed throughout
the entire population (Figure 6, left frame).  
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Figure 6.  The left frame shows the carrier wave
form of a single wave packet.  The right frames
show the changes in AM pattern with classical
conditioning.  The visual, auditory and somatic
cortices have the same form of coding: a chaotic
carrier wave spatially amplitude-modulated.  
This spatially coherent wave serves as a carrier
for content by amplitude modulation in space
(right frames). Because the AM patterns are
created by interactions of neurons by synapses
that have been modified by experience, patterns
are not invariant with stimuli but reflect instead
that experience.  Hence the internal context of
cortical responses to stimuli is carried in the
spatial domain of cortical dynamics by spatial
AM of the aperiodic carrier wave form [28].  

During behavioral conditioning of an animal a
new AM pattern emerges with each new stimulus
the animal learns to discriminate[26], implying
that the sensory system maintains an attractor
landscape with a basin for each class.  

The basin of each attractor is defined by the
stimuli in the learning set that is paired with
reinforcement.  Each basin is accessed by a state
transition that is driven by a surge of input from
sensory receptors, because the entire landscape
is brought into play, then suppressed during
exhalation to enable a new sample to be taken
(Figure 7).  The basin allows for many-to-one
convergence that takes place when the animal
generalizes over samples to identify the class to
which a stimulus belongs.  An important feature
is that the chaos is a mesoscopic property.  The
microscopic neurons are governed by point
attractors, not by chaotic attractors.

Figure 7. The state space of the olfactory system
is schematized as it might appear from a high
dimensional space projected into 2-space.  The

attractor landscape appears with inhalation, and it
dissolves with exhalation to allow the next
stimulus to be classified.  

The state transition is manifested by a conic
phase gradient (Figure 8) of the aperiodic
oscillatory event [21].  The apex of the cone
demarcates the site of nucleation for each state
transition, the location and sign of which vary
randomly.  The random variation in sign
(extreme lead or lag) shows that the apex cannot
represent the location of a pacemaker.  The
phase gradient shows the group velocity by
which it spreads [21, 22, 24].  

Figure 8.  Phase distributions were measured with
respect to the phase of the spatial ensemble
average at the surface of the olfactory bulb and
fitted with a cone in spherical coordinates.  The
sketch is a projection of the outline of the bulb as
it would appear on looking through the left bulb
onto the array an the lateral surface of the bulb.
A representative set of isophase contours is at
intervals of 0.25 radians/mm. The locations of the
apices of the cones on the surface of the sphere
(2.5 mm in radius) are plotted from the center of
the array to the antipode. The square outlines the
electrode array.  The standard error of location of
points was twice the radius of the dots.

Phase cones play a major role in determining the
size of wave packets in neocortex, which is a
continuous sheet of neuropil over each entire
cerebral hemisphere.  The delay that is imposed
in the state transition from the site of nucleation
by the conduction velocities of the axons that run
parallel to the surface causes progressive phase
difference with distance, eventually to the extent
of going out of phase.  This offers a solution to
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the problem of how differing wave forms coexist
in the same hemisphere. The phase gradient
creates a soft boundary condition that is
approximated by the half-power radius, implying
that the modal diameter of neocortical wave
packets is about a centimeter [23].  
These two kinds of coding coexist in brains.
The microscopic coding is characteristic of
single neurons in the brain stem and spinal cord
as well as in the peripheral nervous system, but
also of cortical neurons.  The microscopic pulse
trains are described by means of stochastic point
processes.  The mesoscopic coding is found in
the cortices as local mean fields of activity that
constitute averages over many neurons.  This
activity has continuous distributions of neural
activity, with time and space constants 1 to 2
orders of magnitude larger than those for single
neurons.  Though it appears random in time, this
activity is spatially coherent and highly
structured in  phase and amplitude [17, 18].
Hence equations for describing neurodynamics
have two forms: discrete and stochastic
difference equations to model the microscopic
input and output channels of cerebral cortex, and
continuous integrodifferential equations for
intracortical dynamics [12, 15].  While neural
networks can be modeled with matrices that
represent the dynamics of local integrate-and-fire
elements connected globally, whether fully or
sparsely, the dynamics of cerebral cortex is
modeled with arrays of coupled oscillators in
two spatial dimensions, with sparse but global
internal connectivity to represent the architecture
of the neural populations of cortex.  

The distinction between digital and analog
embodiments is focused on the difference
between representing state variables with
numbers versus voltages, not with discrete
versus continuous variables.  Brain function is
neither analog nor digital, as these terms are
defined for computer usage.  Pulse trains that
appear to be digital are in fact analog as a form
of pulse frequency modulation.  Analog
integration is done with continuous variables in
time, but usually with discretization by
compartments in space and for segmenting for
multiplexing (Figure 3) to solve the connectivity
problem [11]. Sums of dendritic current are
locally continuous distributions in time and
space for short segments of time, but their spatial
patterns are discretized by  discontinuities
imposed by 1st order state transitions (Figure 5)
to form wave packets [12, 15, 16].  New brain
models will be hybrid, not analog or digital.  

Parallel networks of coupled oscillators in
software [36] and hardware [11] serve to model
the nonlinear dynamics of cortex.  Solutions of
ordinary differential or difference equations
serve to model the chaotic wave forms of normal
and abnormal brain activity, including the spatial
coherence of broad-spectrum aperiodic activity
that is so characteristic of EEG fields of potential
over the cerebral cortex.  The spatially coherent
mesoscopic activity is extracted by the targets of
cortical transmission through divergent-
convergent axonal tracts that perform spatial
integral transformations on cortical outputs.  By
this operation the cooperative, spatially coherent
chaotic activity is extracted as signal, and the
input-driven, spatially incoherent activity is
attenuated as noise [20].  

4. Simulation of "background" activity

Unlike most neural network models, which
remain at rest until given input, the cerebral
cortex is ceaselessly active in sleep and
wakefulness.  The key to understanding the
hierarchical organization of brain function lies in
explaining the dynamical origin of this sustained
endogenous activity.  At the microscopic level,
the background activity of single neurons in the
absence of sensory stimulation can be accounted
for by relaxation oscillation, which tends to give
periodic or quasiperiodic pulse trains
manifesting one or more limit cycle attractors.
which is consistent with the performance of the
"integrate and fire" models of single neurons.  

In contrast, neurons embedded in neuropil
typically generate aperiodic pulse trains [1, 2, 12,
24].  Their autocorrelations reveal their
refractory periods but seldom clear characteristic
frequencies.  Their interval histograms conform
to the Gamma distribution of order 1/2 at modest
mean rates, tending toward the Poisson
distribution (with a dead time) at low rates and
the Gaussian distribution at high rates.
Crosscorrelations between adjacent neurons are
vanishingly small.  

The background activity of neuropil, that is
observed in the  cortex at all levels, arises from
mutual excitation within multiple populations of
excitatory neurons.  The governing point
attractors are set by the mesoscopic states, which
act as order parameters [31] that regulate the
contributing neurons.  The point attractors
manifest a homogeneous field of white noise
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[12].  These properties show that the activity
arises by widespread synaptic interactions, and
that it is maintained and governed by a
mesoscopic point attractor based on the recurrent
excitatory collateral axons of cortical neurons [5,
9] in neocortex and in populations of excitatory
neurons [12] in the olfactory system (Figure 9).  

The most detailed study is focused on the
periglomerular neurons in the outer layer of the
olfactory bulb, which form a densely
interconnected population receiving input from
the receptors and giving output to the mitral
cells.  Each neuron excites thousands of others
in its surround and receives from them along
innumerable connections with distributed axonal
distances and successive synaptic delays.  The
feedback is modeled by a rational approximation
for a 1-dimensional diffusion process with the
Laplacian operator s in the expression,

 exp[ -(sT)0.5],                      (4)

where T is a lumped, distance-dependent time
constant [12].  This accounts for the
randomization of activity on each pass through
the loop for each neuron.  Owing to the sigmoid
nonlinearity [10, 20] in the feedback, the
population has two stable points, one at zero and
the other at a nonzero level [6].  

Figure 9.  Chaotic dynamics arises by feedback
with delay among 3 coupled oscillators having
incommensurate characteristic frequencies.  The

landscape is stabilized by additive noise.  Each
node is governed by equations (1) and (2).  In
digital models, noise serves to stabilize the chaotic
attractors [25].  
Thus, periglomerular pulse density is observed
as noise at the microscopic level, but it is
modeled as a d.c. bias that is stable under
external perturbation at the mesoscopic level (top
trace in Figure 10).  The mechanism of
stabilization of the point attractor by means of
the sigmoid curve is shown in Figure 11, along
with the amplitude histogram and power
spectrum of periglomerular pulse density.  

The bulb, nucleus and cortex interact by positive
and negative feedback. The self-sustaining basal
activity of the periglomerular neurons provides
an excitatory bias to the mixed populations
comprising the inner bulb, and also the cortices
to which the bulb transmits. The three parts have
characteristic frequencies in the gamma range
(20-80 Hz) and feedback delays to each other as
well as to the periglomerular neurons.  

Figure 10.  Simulations of output in the resting
state by the KIII model are shown for activity
patterns observed in 4 parts of the olfactory
system in the rest state.

The inhibitory feedback between oscillators
gives rise to negative or zero Lyapunov
exponents. The excitatory feedback from the
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anterior nucleus to the periglomerular neurons
gives a positive exponent.  Aperiodic activity is
sustained by the system in the absence of input.
The basal activity again exhibits a Gaussian
distribution of amplitude (Figure 12), but the
operating rest point at zero wave density is on
the rising phase of the gain curve, reflecting the
inherent bistability of the KII set in strong
contrast to the periglomerular KI set [20].  

Figure 11.  The stabilization of the KI set at the
input layer of the olfactory bulb, PP, is on the
right (upper) segment of the sigmoid curve, so
that an increase in input amplitude leads to an
increase in output amplitude, but the positive
feedback gain is decreased, so the system returns
to its nonzero rest level.  That level is represented
in a linear approximation by a real-valued root of
zero, which corresponds to a pole at the origin of
the complex plane.  This pole governs the level of
the background bias to the bulb and its targets of
transmission.  

5. Microscopic coding and noise

These observations in modeling the
neuroanatomy and neurodynamics of olfactory
cortex and simulating its spatiotemporal patterns
of activity require inclusion of the distinction
between high-dimensional "noise" at the
microscopic unit level, low-dimensional chaotic
"signal" at the mesoscopic EEG level [14], and
the relations between them.  The "noise" is
essential for the maintenance of normal
mesoscopic activity, for which it is a carrier, and
the levels and spatiotemporal patterns of the
"noise" are controlled by the mesoscopic activity
acting as an order parameter [31] and as a
"signal" [7, 17, 18, 25].  In turn, the mesoscopic
activity of multiple mesoscopic domains
organizes itself into macroscopic patterns that
may occupy an entire cerebral hemisphere [19].
Microscopic neural coding is determined by
recording pulse trains from single cells during

sensory stimulation and motor activation.  The
sensory code in all modalities is topographic
from multiple receptor types distributed broadly
and inhomogeneously over the receptor surface
and extending their axons centrally as labeled
lines.  The intensity on each axon is conveyed by
the pulse frequency.  

Neural coding in cortical populations has been
analyzed mainly from records of EEGs [13].
Corroborative evidence has been obtained by
simultaneous recording of dendritic potentials
and selected axonal potentials [12, 15].  The
requirement has been imposed that (a) records
be taken simultaneously from arrays of 16 to 64
electrodes placed on the cortical surface; (b) that
the subjects be in the waking state and engaged
in controlled sensorimotor behavior, such as
performance of a conditioned reflex in response
to conditioned stimuli; and (c) that brief epochs
(on the order of 0.1 second) of EEGs be
classified in respect to antecedent conditioned
stimuli or consequent conditioned responses,
solely on the basis of the spatiotemporal patterns
of cortical activity that are extracted from sets of
EEG traces [26, 28].  

Figure 12. Spectrum and amplitude histogram of
olfactory bulb simulation. The gain curve is from
equation 3, the derivative of the sigmoid function.
The negative feedback loops of the three
oscillators are stabilized on the left (lower) side of
the sigmoid curve, where an increase in input
leads to an increase in output and also to an
increase in gain, giving the input-dependent
destabilization.  This mechanism for conditional
stabilization and bistability is characteristic of the
limit cycle attractor.  
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The content is distributed over the entire sensory
area, so that every neuron is involved in every
discrimination.  Local areas with high amplitude
EEG are no more or less important than those
with low amplitude EEG [26, 27].  The fields
have the forms of interference patterns
resembling holograms, except that their
mechanism of formation is nonlinear and
unstable involving state transitions and there is
no inverse by which to recreate the input from
the created patterns.  The mean firing rates have
no value as state variables, because it is the set of
relations of every local amplitude to all others
that defines the content.  

The conversion of a sensory stimulus in the
microscopic code on input axons to a
mesoscopic code distributed over the whole of
the sensory cortex depends on the conjunction
of three factors.  One is the prior formation
through learning of a nerve cell assembly of
strengthened associational connections at the
synapses of excitatory neurons onto other
excitatory neurons [9, 12].  The second is a
motivated state of the subject that is expressed in
a steep sigmoid curve.  The third is a surge of
input that is widespread over the cortex and that
includes input not only to the learned nerve cell
assembly but also to many other neurons in the
bulb, whose response has been attenuated by
habituation to uninformative, distracting, and
ambiguous input.  

In these circumstances the destabilized cortical
mechanism is guided by the assembly into the
basin in a chaotic attractor landscape for the
entire cortex, which is expressed by the spatial
pattern of the output of the entire cortex.  That
output is re-expressed in the microscopic form
by the action potentials on the axons of the
projection neurons that carry it to other areas of
cortex or into the brainstem, where it has been
shown to guide other interactive populations into
basins of attraction formed in past learning
experiences [ 4].  

6. Chaotic attractor stabilization and
classification enhancement by noise

New techniques for large-scale parameter
optimization enable simulation of these time
series, as well as their spatial patterns of
amplitude modulation following learning, with
the solutions of networks of coupled ordinary
difference equations having a static sigmoid

nonlinearity at the output of each node.  The
deterministic model is exquisitely sensitive to
exceedingly small numerical changes in
parameters, due to attractor crowding with basins
of attraction shrinking to approximate the size of
the digital numbers used for computation [35],
and to lack of a shadowing trajectory [8, 30] due
to the repeated destabilization and restabilization
that requires translation of the real parts of the
closed loop roots of the differential equations
across the imaginary axis under piece-wise
linearization [12, 20].  

Considering that the olfactory system has both
peripheral and central sources of noise, low-level
Gaussian noise is added (Figure 9) at two
significant points [7, 25].  This noise is designed
to simulate the experimentally derived
parameters of neurobiological noise: spatially
independent and rectified at the input to simulate
receptor input, and normally distributed with an
excitatory bias but spatially coherent for the
noise of central origin from other parts of the
brain.  The combined effect is to stabilize the
model under input-induced state transitions and
improves the simulations of EEGs and pulse
densities from the olfactory system.  Noise
appears to do this by smoothing the landscape
from digital representation in a nowhere
differentiable manifold resembling rabbit fur to a
smooth and well behaved landscape with a small
number of large basins.  These improvements
are needed not only for EEG simulations but for
optimizing the classification efficacy of the KIII
model [32].  The Gaussian noise is simulated
digitally with a random number generator, which
supports robust and repeated access by  repeated
inputs to the learned basins of attraction in the
simulated landscape through  1st order state
transitions that are triggered by spatiotemporally
patterned inputs given to the open
nonautonomous KIII model, just as stimuli are
received by brains that routinely function as
open systems.

In using these data to model changes with
associative learning a 2-D layer of 64 coupled
oscillators is constructed to simulate the OB, and
the simulated synaptic strengths between the
coupled oscillators in the model are modified in
accordance with modified Hebbian criteria [36].
The model also incorporates the biological
property that the response energy during
habituation to undesired input is not decreased,
but is shifted from the gamma range to the theta
range of cortical activity.  Thereby the
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"background" noise is not filtered out but is
used to enhance the effectiveness of the
microscopic "foreground" signal by contributing
to the destabilization simulating the respiratory
wave (Figure 5).  With education by examples
under selective reinforcement, the spatial pattern
of amplitude modulation of the common carrier
changes from a previous pattern and stabilizes in
a new pattern, whenever an example is given as a
member of the learned class of input.  The report
given by the system generalizes to the class of
membership, which conveys the meaning of a
stimulus, and not its form that is unique to each
instance of stimulus presentation.  

Each new stimulus that the model is trained to
discriminate gives rise to a distinctive new spatial
pattern of output that consists of 64 scalar AM
values of the carrier wave, so that each output is a
vector for a point in 64-space.  The degree of
similarity or difference between patterns is
expressed by a Euclidean distance in 64-space.
Classification is based on clustering of the
points derived from measurement of individual
responses in the biological system [26].  The
effectiveness of the classification depends
equally on each of the available measurements
from a topographic array of input channels,
which shows that the information density is
distributed and spatially uniform, not localized as
with the point processes of sensory displays.
These properties replicate the dynamics of the
olfactory system operating in the chaotic mode
[13, 36].  The most effective performance of the
KIII model in pattern recognition is achieved
when it is operating in a chaotic domain that has
been stabilized by optimal levels of noise [32],
and in which the noise is further optimized in the
manner of stochasit resonance.  

7. Mesoscopic to macroscopic interface

This work is now in progress.  

8. Summary.

The sensory input and motor output of brains is
carried by action potentials at the microscopic
level of brain function.  The organization of the
patterns of the 'units' that support behavior is
done by large domains of the brain, as revealed
by macroscopic brain imaging.  The work of
bridging between these levels is done at the
intervening mesoscopic level by wave packets.
These are spatially coherent domains of activity
1-2 cm in diameter, lasting 80-120 msec, and

recurring at 2-7/sec.  They are manifestations of
local mean field activities of millions of neurons,
which self-organize spatial patterns of activity in
the form of amplitude modulation of a common
aperiodic carrier wave.  They show the intrinsic
bistability of areas of cortex at the mesoscopic
level, comparable to the bistability of the axon at
the microscopic level.  A sensory cortex receives
input from sensory pathways during a receptive
'diastolic' period, then transits to a transmitting
'systolic' mode by a 1st order phase transition, in
which state it combines the features of the
sensory input in the context of past experience
fixed in the synaptic matrix of the cortex by past
learning and the current brain state determined
by the neuromodulators in which the cortex is
bathed.  The cortical output is broadcast in the
form of a distributed interference pattern, which
is selected by the targets in much the way that
radio receivers can be tuned to specific broadcast
stations, unlike point-to-point transmissions in
telephone networks.  All this mesoscopic action
is detected, measured, and understood through
recording the EEGs generated by the neurons
comprising and enslaved by the wave packets.
The EEG is not in itself the agent of cohesion of
the neural activity; it is the noise made by the
millions of neurons that contribute to it.  Any
attempt to inject electric current from electrodes
placed in cortex so as to simulate the function of
a wave packet would be like trying to fly a plane
by playing a tape recording of the plane taking
off from a loudspeaker set up beside the plane
parked on a runway.  The upshot is that the
design of new electronic devices can best be
undertaken with the aim of realizing in hardware
the properties of wave packets, not merely of
action potentials.  
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